Aberdeen Grammar School

Mathematics Department

CfE Advanced Higher Mathematics Learning Intentions and Success Criteria

BLOCK 1					BLOCK 2				BLOCK 3			
Pages	Торіс	Specimen Paper	Exemplar Paper	Pages	Торіс	Specimen Paper	Exemplar Paper	Pages	Торіс	Specimen Paper	Exemplar Paper	
1	Partial Fractions	15(a)		9-11	Integration	3,5,11	15	19	Gaussian Elimination		3	
2-4	Differentiation	1,10	2,6	12	Volumes of Revolution		13	20-21	Matrices	6	7,11	
5	Differentiation Related Rates	7		13-14	Sequences and Series	9		22	Euclidean Algorithm	4		
5	Differentiation Rectilinear Motion		7	15	McLaurin Series	8	8	22	Methods of Proof	12	9	
6	Binomial Theorem	2	1	16-17	Properties of Functions	13	10,14	23-24	Vectors	14	16	
7-8	Complex Numbers	17	5	18	Summation Proof by Indication	16	12	25-26	Differential Equations	15(b)	17,18	

CfE Advanced Higher Mathematics Formulae List

Standar	d derivatives
f x	f' x
$\sin^{-1}x$	$\frac{1}{\sqrt{1-x^2}}$
$\cos^{-1} x$	$-\frac{1}{\sqrt{1-x^2}}$
$\tan^{-1}x$	$\frac{1}{1+x^2}$
tan x	$\sec^2 x$
$\cot x$	$-\csc^2 x$
sec x	$\sec x \tan x$
cosec x	$-\csc x \cot x$
$\ln x$	$\frac{1}{x}$
e ^x	e ^x

f x	$\int f x dx$
$\sec^2 ax$	$\frac{1}{a}\tan(ax) + c$
$\frac{1}{\sqrt{a^2 - x^2}}$	$\sin^{-1}\left(\frac{x}{a}\right) + c$
$\frac{1}{a^2 + x^2}$	$\frac{1}{a}\tan^{-1}\left(\frac{x}{a}\right) + c$
$\frac{1}{x}$	$\ln x + c$
e^{ax}	$\frac{1}{a}e^{ax}+c$

Arithmetic series	$S_n = \frac{1}{2}n \Big[2a + n - 1 d \Big]$
Geometric series	$S_n = \frac{a \ 1 - r^n}{1 - r}$
Summations	$\sum_{r=1}^{n} r = \frac{n(n+1)}{2}, \sum_{r=1}^{n} r^2 = \frac{n + 1 + 2n}{6}, \sum_{r=1}^{n} r^3 = \frac{n^2 (n+1)^2}{4}$
Binomial theorem	$a+b^{n} = \sum_{r=0}^{n} {n \choose r} a^{n-r} b^{r}$ where ${n \choose r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$
Maclaurin expansion	$f(x) = f(0) + f'(0)x + \frac{f''(0)x^2}{2!} + \frac{f'''(0)x^3}{3!} + \frac{f^{iv}(0)x^4}{4!} + \dots$
De Moivre's theorem	$r(\cos\theta + i\sin\theta)^{p} = r^{p} \cos p\theta + i\sin p\theta$
Vector product $\mathbf{a} \times \mathbf{b}$ =	$= \mathbf{a} \mathbf{b} \sin \theta \ \hat{\mathbf{n}} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \mathbf{i} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} - \mathbf{j} \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} + \mathbf{k} \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$
Matrix Transformation	on
Anti-clockwise rotatio	on through an angle, $ heta$ about the origin, $O\begin{bmatrix} \cos heta & -\sin heta \\ \sin heta & \cos heta \end{bmatrix}$

Topic 1 Methods in Algebra and Calculus Assessme	nt Standard 1.1	Applying Algebraic Skills to parti	al fractions	00	<u>••</u>	00
I know that a rational function is a function which c	an be expressed in the form	$\frac{p(x)}{q(x)}$ where $p(x)$ and $q(x)$ are po	lynomial functions.			
I know that a proper rational function is a fraction v	vhere the degree of the nun	nerator is LESS than the degree of	the denominator .			
I can express a proper rational function as a sum of	partial fractions whose deno	ominator is of most degree 3 and e	asily factorised.			
Express each of the following in partial fractions by	considering the type of deno	ominator.				
Distinct Linear factors	$\blacklozenge 1) \frac{3x+2}{x+3 x-4}$	♦ 2) $\frac{7x+1}{x^2+x-6}$	♦ 3) $\frac{8x+14}{(x-2)(x+1)(x+3)}$			
Repeated Factor	♦ 4) $\frac{3x+10}{(x+3)^2}$	♦ 5) $\frac{9}{(x-2)(x+1)^2}$	• 6) $\frac{x^2 + 6x - 3}{x(x-1)^2}$			
Repeated Factor NOT factorised	♦ 7) $\frac{7x+33}{x^2-10x+25}$	♦ 8) $\frac{3x^2 - 5x - 3}{x^2 - x^3}$				
Linear factor and Irreducible Quadratic Factor	♦ 9) $\frac{x^2 + 2x + 9}{(x-1)(x^2+3)}$	♦ 10) $\frac{7x^2 - x + 14}{(x-2)(x^2+4)}$	♦ 11) $\frac{5x^2 - x + 6}{x^3 + 3x}$			
I know that an improper rational function is a fracti	on where the degree of the	numerator is MORE than or EQUA	L to the degree of the denominator.			
I know how to reduce an improper rational function to a polynomial and a proper rational function using algebraic division.						
Express the following improper rational functions as	a polynomial and a proper	rational function which is given as	partial fractions.			
> 12) $\frac{x^3 + 2x^2 - 2x + 6}{(x - 1)(x + 3)}$	3) $\frac{x^2 + 3x}{x^2 - 4}$	> 14) $\frac{x^4 + 2x^2 - 2x + 1}{x^3 + x}$				

Topic 2 Methods in Algebra an	d Calculus Assessment Standard 1.2	Applying calculus skills throug	h techniques of differentiation)	<u>••</u>	00
I can understand the method o	f differentiation from first principles usin	$\log f'(x) = \frac{\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}}{h}$				
I can differentiate an exponent	ial function and I know that if $f(x) = e$	^x then $f'(x) = e^x$.				
I can differentiate a logarithmi	c function and I know that if $y = \ln x$ the	then $\frac{dy}{dx} = \frac{1}{x}$.				
I can differentiate a function us	Sing the chain rule: $(f(g(x)))$	(x))' = f'(g(x)).g'(x).				
I can differentiate a function us	ing the product rule: $(f(x)_{\xi})$	g(x))' = f'(x)g(x) + f(x)g'(x).				
I can differentiate a function us	sing the quotient rule: $\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)}{g(x)}$	$\frac{x)g(x) - f(x)g'(x)}{(g(x))^2}.$				
I can use the derivative of tan a	c. If $f(x) = \tan x$ then $f'(x) = \sec x$	$c^2 x$.				
I know that the reciprocal trigo	phometric functions are $\sec x = \frac{1}{\cos x}$,	$\csc x = \frac{1}{\sin x}$ and $\cot x = \frac{1}{\tan x}$	$\frac{1}{\operatorname{an} x}$.			
I can derive and use the derivat	tives: $\frac{d}{dx}(\cot x) = -\cos ec^2 x$, $\frac{d}{dx}(\sec x) = s$	$\sec x \tan x$ and $\frac{d}{dx}(\csc x) = -c$	$\cos \sec x \cot x$.			
Differentiate						
♦ 1) $y = e^{3x}$	♦ 2) $y = e^{4x^2 - 5x}$	$\blacklozenge 3) y = \sqrt{e^{x^2} + 4}$	♦ 4) $f(x) = \ln(x^3 + 2)$			
• 5) $f(x) = \sqrt{\sin 5x}$	♦ 6) $f(x) = \sin^3(2x-1)$	$\blacklozenge 7) y = \frac{5x+2}{x-3}$	♦ 8) $y = \frac{2x-5}{3x^2+2}$			
♦ 9) $y = 3x^4 sinx$	♦ 10) $f(x) = x^2 \ln x, x > 0$	♦ 11) $y = \frac{1 + \ln x}{5x}$	♦ 12) $y = \frac{\cos x}{e^x}$			
▶ 13) $y = e^{2x} \tan 3x$	> 14) $f(x) = \ln \sin 2x $	> 15) $y = \frac{\sec 2x}{e^{3x}}$	> 16) $y = \frac{\tan 2x}{1+3x^2}$			

Topic 2 Methods in Algebra and Calculus Assessment Standard 1.2 Applying calculus skills through techniques of differentiation	00	<u>••</u>	00
I know that $\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}$.			
I know that $\sin^{-1} x$, $\cos^{-1} x$ and $\tan^{-1} x$ are inverse trigonometric functions.			
I can differentiate an inverse function using $y = f^{-1}(x) \Rightarrow f(y) = x \Rightarrow (f^{-1}(x))'f'(y) = 1 \Rightarrow (f^{-1}(x))' = \frac{1}{f'(y)}$.			
I know that $\frac{d}{dx} \left(\sin^{-1} x \right) = \frac{1}{\sqrt{1 - x^2}}, \frac{d}{dx} \cos^{-1} x = \frac{-1}{\sqrt{1 - x^2}} \text{ and } \frac{d}{dx} \tan^{-1} x = \frac{1}{1 + x^2}$			
I know using the chain rule that $\frac{d}{dx} \sin^{-1}(f(x)) = \frac{f'(x)}{\sqrt{1 - (f(x))^2}}, \frac{d}{dx} \cos^{-1}(f(x)) = \frac{-f'(x)}{\sqrt{1 - (f(x))^2}}$ and $\frac{d}{dx} \tan^{-1}(f(x)) = \frac{f'(x)}{1 + (f(x))^2}$			
Differentiate			
♦ 17) $y = \sin^{-1}(3x)$ ♦ 18) $y = \sin^{-1}\left(\frac{x}{2}\right)$ ♦ 19) $y = \cos^{-1}(5x)$ ♦ 20) $y = \tan^{-1}\left(\frac{x}{4}\right)$			
> 21) $y = \tan^{-1} x^2$ > 22) $y = 2\sin^{-1} \sqrt{1+x}$ > 23) $y = (x-3)\tan^{-1}(3x)$ > 24) $y = \frac{\tan^{-1} 2x}{1+4x^2}$			
I can find the first and second derivative of an implicit function.			
♦ 25) Find the first derivative of $x^3y + xy^3 = 4$ using implicit differentiation.			
♦ 26) Find the equation of the tangent to the curve $y^3 + 2xy = x^2 + 4$, at the point (3, 1).			
• 27) (a) Given $xy - x = 4$, use implicit differentiation to obtain $\frac{dy}{dx}$ in terms of x and y . (b) Hence obtain $\frac{d^2y}{dx^2}$ in terms of x and y .			

Topic 2 Methods in Algebra and Calculus Assessment Standard 1.2 Applying calculus skills through techniques of differentiation	<u></u>	<u>••</u>	00
I can find the first and second derivative of a parametric function.			
♦ 28) Given that $x = \ln(1 + t^2)$, $y = \ln(1 + 2t^2)$ use parametric differentiation to find $\frac{dy}{dx}$ in terms of <i>t</i> .			
♦ 29) Given $x = \sqrt{t+1}$ and $y = \cot t$, $0 < t < \pi$ obtain $\frac{dy}{dx}$ in terms of t.			
♦ 30) (a) Given $y = t^3 - \frac{5}{2}t^2$ and $x = \sqrt{t}$ for $t > 0$ use parametric differentiation to express $\frac{dy}{dx}$ in terms of t in simplified form.			
> (b) Show that $\frac{d^2y}{dx^2} = at^2 + bt$, determining the values of the constants a and b.			
I can apply parametric differentiation to motion in a plane.			
♦ 31) At time <i>t</i> , the position of a moving point is given by $x = t + 1$ and $y = t^2 - 1$. Find the speed when $t = 2$.			
♦ 32) The motion of a particle in the x-y plane is given by $x = t^2 - 5t$, $y = t^3 - 8t$, where t is measured in seconds and x, y are measured in metres.			
Calculate the speed when $t = 3$.			
I can use logarithmic differentiation when working indices involving the variable.			
I can use logarithmic differentiation when working with extended products and quotients.			
Use logarithmic differentiation to differentiate each of the following:			
> 33) (a) $y = 2^x$ (b) $y = x^{\tan x}$ (c) $y = \frac{x^2 \sqrt{7x-3}}{1+x}$			
> 34) Given that $y = 6^x \sqrt{1-2x}$, $x \ge \frac{1}{2}$, use logarithmic differentiation to find a formula for $\frac{dy}{dx}$ in terms of x.			

Topic 2	2 Methods in Algebra and Calculus Assessment Standard 1.2 Applying calculus skills through techniques of differentiation	<u>••</u>	00	00
l can a	pply differentiation to related rates in problems where the functional relationship is given explicitly.			
> 35)	The radius of a cylindrical column of liquid is decreasing at the rate of $0 \cdot 02ms^{-1}$, while the height is increasing at the rate $0 \cdot 01ms^{-1}$.			
	Find the rate of change of the volume when the radius is 0.6 metres and the height is 2 metres. [Recall volume of a cylinder: $V = \pi r^2 h$].			
> 36)	Air is pumped into a spherical balloon at a rate of $48cm^3$ / s.			
	Find the rate at which the radius is increasing when the volume of the balloon is $\frac{32}{3}\pi cm^3$			
> 37)	(a) A circular ripple spreads across a pond. If the radius increases at $0 \cdot 1ms^{-1}$, at what rate is the area increasing when the radius is 8 cm? (b) If the area continues to increase at this rate, aw what rate will the radius be increasing when it is 5 metres?			

Topic 2	Applications of Algebra and Calculus Assessment Standard 1.5 Applying algebraic and calculus skills to problems	<u>•</u>	00	00
l can a	oply differentiation to problems in context.			
≻ 1)	A body moves along a straight line so that after t seconds its displacement from a fixed point O on the line is x metres.			
	If $x = 3t^2(3-t)$ find (a) the initial velocity and acceleration (b) the velocity and acceleration after 3 seconds.			
≥ 2)	A motorbike starts from rest and its displacement x metres after t seconds is given by: $x = \frac{1}{6}t^3 + \frac{1}{4}t^2$.			
	Calculate the initial acceleration and the acceleration at the end of the 2nd second.			
≫ 3)	A cylindrical tank has a radius of r metres and a height of h metres. The sum of the radius and the height is 2 metres.			
	(a) Prove that that the volume in m^3 , is given by $V = \pi r^2 (2 - r)$. (b) Find the maximum volume.			

Topic 4 Applications of Algebra and Calculus Assessment Standard 1.1(b) Applying algebraic skills to complex numbers	<u></u>	00	<u>@</u>
I know the definition of i as a solution of $x^2 + 1 = 0$, so $i = \sqrt{-1}$.			
I know the definition of the set of complex numbers as $C = \{a + bi : a, b \in R\}$ where a is the real part and bi is the imaginary part.			
I know that $z = a + bi$ is the Cartesian form of a complex number and that $z = a - bi$ is the conjugate of z.			
I can perform addition, subtraction, multiplication and division operations on complex numbers.			
♦ 1) Solve $z^2 = -9$			
♦ 4) Calculate (a) $4-2i + 3+7i$ (b) $5+4i - 3-2i$ (c) $2-7i + 3+2i$ (d) Divide $5+2i$ by $1-3i$ ♦ 5) Evaluate $\left(\frac{\sqrt{3}+i}{2}\right)^3$			
I know the fundamental theorem of algebra and the conjugate roots property.			
I can find the roots of a quartic when one complex root is given.			
I can factorise polynomials with real coefficients.			
I can find the square root of a complex number.			
I can solve equations involving complex numbers by equating real and imaginary parts.			
> 6) Show that $z=3+3i$ is a root of the equation $z^3-18z+108=0$ and obtain the remaining roots of the equation.			
> 7) Given that $z = 1 - i$ is a root of the polynomial equation $z^4 + 4z^3 - 8z + 20 = 0$, find the other roots.			
> 8) Find the square roots of $5+12i$ > 9) Calculate $\sqrt{8-6i}$			
> 10) Solve $z + i = 2\overline{z} + 1$ > 11) Solve $z^2 = 2\overline{z}$			
▶ 12) Given the equation $z + 2iz = 8 + 7i$, express z in the form $a + ib$.			

Topic 4 Geometry, Proof and Systems of Equations Assessment Standard 1.3 Applying geometric skills to complex numbers	00	00	00
I can find the modulus and principal argument of a complex number given in Cartesian form.			
I know that $r(\cos\theta + i\sin\theta)$ is the polar form of a complex number.			
I can convert a given complex number from Cartesian to polar form or from polar to Cartesian form.			
♦ 1) Find the modulus and argument of : (a) $1 + i\sqrt{3}$ (b) $1 - \sqrt{2}i$ (c) $-5 - 5i$ ♦ 2) Write $z = -\sqrt{3} + i$ in polar form.			
♦ 3) Write $z = \overline{2}$ (cos $\frac{3\pi}{4}$ + isin $\frac{3\pi}{4}$ in Cartesian form. ♦ 4) Given the equation $z = 1 - \sqrt{3}i$, write down \overline{z} and express \overline{z}^2 in polar form.			
I know and can use De Moivre's theorem with positive integer indices and fractional indices.			
I can apply De Moivre's theorem to multiple angle trigonometric formulae.			
I can apply De Moivre's theorem to find n^{th} roots of unity.			
♦ 5) Write the complex number $z = \sqrt{2}(1+i)$ in polar form and verify that z satisfies the equation $z^4 + 16 = 0$.			
> 6) Let $z = \frac{1+i^9}{1-\overline{3}i^5}$. Find by using De Moivre's Theorem the modulus and argument of Z.			
> 7) Evaluate $z = 4 \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} + \frac{1}{2}$			
> 8) Express $-i$ in the form $r \cos \theta + i \sin \theta$, where $-\pi < \theta \le \pi$. Hence find the fourth roots of $-i$.			
> 9) Solve $z^6 = 1$.			
I can plot complex numbers in the complex plane on an Argand Diagram.3			
I can interpret geometrically equations or inequalities in the complex plane of the form $ z = 1$; $ z - a = b$; $ z - i = z - 2 $; $ z - a > b$.			
♦ 10) Show the complex numbers $z = 3 + 4i$ and its conjugate, \overline{z} , on an Argand diagram.			
> 11) Express $z = \frac{(1+2i)^2}{7-i}$ in the form $a+ib$, where a and b are real numbers. Show z on an Argand diagram and evaluate $ z $ and $\arg(z)$.			
▶ 12) Give a geometric interpretation and the Cartesian equation for each locus. (a) $ z-2i = 4$ (b) $ z-1-3i \le 5$ (c) $ z-2 = z+4i $			

Topic 5 Methods in Algebra and Calculus Assessment Standard 1.3Applying calculus skills through techniques of integration	<u>@</u>	<u>••</u>	00
I can use partial fractions to integrate proper rational functions where the denominator has distinct linear factors.			
♦ 15) Integrate (a) $\int \frac{3}{(x-2)(x+1)} dx$ (b) $\int \frac{6x-11}{(x-3)(2x+1)} dx$ (c) $\int \frac{14-x}{x^2+2x-8} dx$			
> 16) Show that $\int_{3}^{4} \frac{3x-5}{(x-1)(x-2)} = 2\ln 3 - \ln 2$			
> 17) Evaluate $\int_{1}^{2} \frac{3x+5}{(x+1)(x+2)(x+3)} dx$ expressing your answer in the form $\ln \frac{a}{b}$, where a and b are integers.			
I can use partial fractions to integrate proper rational functions where the denominator has a repeated linear factor.			
> 18) Integrate (a) $\int \frac{x}{(x-1)(x+1)^2} dx$ (b) $\int \frac{x^2 - x - 4}{(x+2)(x+1)^2} dx$ $\int \frac{x+1}{2x(x+3)^2} dx$			
> 19) Find the exact value of $\int_{0}^{1} \frac{5x+7}{(x+1)^{2}(x+3)} dx$			
I can use partial fractions to integrate improper rational functions where the denominator has distinct linear factors.			
> 20) Integrate (a) $\int \frac{x^2 - 6}{(x+4)(x-1)} dx$ (b) $\int \frac{3x^2 - 5}{x^2 - 1} dx$ 21) Find the exact value of $\int_{0}^{2} \frac{2x^2 - 7x + 7}{x^2 - 2x - 3} dx$			
I can use partial fractions to integrate proper and improper rational functions where the denominator has a linear factor and an irreducible quadratic of the form $x^2 + a$.			
> 22) Find (a) $\int \frac{2x^2 + 1}{(x+1)(x^2+2)} dx$ (b) $\int \frac{2x^3 - x - 1}{(x-3)(x^2+1)} dx, x > 3$			
> 23) Express $\frac{12x^2 + 20}{x(x^2 + 5)}$ in partial fractions. Hence evaluate $\int_{1}^{2} \frac{12x^2 + 20}{x(x^2 + 5)} dx$.			

Topic 5	Methods in Algebra and Calculus Asses	ssment Standarc	1.3	Applying calculus skills through techniques of integration)	<u>•</u>	00
l can In	tegrate by parts using one application .						
♦ 24)	Use integration by parts to find:	(a) $\int x e^x dx$	(b) $\int x \sin x dx$	• 25) Evaluate (a) $\int_0^{\frac{\pi}{6}} x \cos x dx$ (b) $\int_0^1 x e^{2x} dx$			
l can In	tegrate by parts using a repeated applic	cation.					
≽ 26)	Use integration by parts to find:	(a) $\int x^2 e^{3x} dx$	(b) $\int x^2 \cos 3x dx$	x			
▶ 27)	Evaluate (a) $\int_{1}^{2} x^2 \ln x dx$	(b) $\int_0^{\frac{\pi}{4}} e^{3x} \sin 2x$	xdx .				
≻ 28)	> 28) (a) Write down the derivative of $\sin^{-1} x$. (b) Use integration by parts to obtain $\int \sin^{-1} x \cdot \frac{x}{\sqrt{1-x^2}} dx$.						
≻ 29)	> 29) Let $I_n = \int_0^1 x^n e^{-x} dx$ for $n \ge 1$. (a) Find the value of I_1 . (b) Show that $I_n = nI_{n-1} - e^{-1}$ for $n \ge 2$. (c) Evaluate I_3 .						

Topic 5	5 Applications of Algebra and Calculus Assessment Standard 1.5 Applying algebraic and calculus skills to problems	00	01	00
l can a	pply integration to problems in context.			
≻ 1)	The velocity, v, of a particle P at time t is given by $v = e^{3t} + 2e^{t}$. (a) Find the acceleration of P at time t. (b) Find the distance covered by P between $t = 0$ and $t = \ln 3$.			
≥ 2)	An object accelerates from rest and proceeds in a straight line. At time, <i>t</i> seconds, its acceleration is given by $a = 20 - 2t$ cm/s ² . (a) Calculate the velocity of the object after 3 seconds. (b) How far did the object travel in the first 8 seconds of motion?			

Topic 6	6 Applications of	Algebra and Calculus As	sessment Standard 1.2	Applying alge	braic skills to sequences and series	00	<mark>0</mark>	00
l know	know the formulae $u_n = a + (n-1)d$ and $S_n = \frac{1}{2}n[2a + (n-1)d]$ for the n^{th} term and the sum to n terms of an arithmetic series .							
l know	I know the formula $u_n = ar^{n-1}$ and $S_n = \frac{a(1-r^n)}{1-r}$, $r \neq 1$ for the n^{th} term and the sum to n terms of a geometric series .							
l can a	pply the above ru	lles on sequences and se	ries to find:					
The n^t	^{<i>h</i>} term	The sum to n terms	The common difference of arithmetic s	sequences	The common ratio of geometric sequences			
I know and can use the formula $S_{\infty} = \frac{a}{1-r}$ for the sum to infinity of a geometric series where $ r < 1$.								
I can expand $\frac{1}{1-r}$ as a geometric series and extend to $\frac{1}{a+b}$.								
> 1) The sum $S(n)$, of the first <i>n</i> terms of the sequence, u_1, u_2, u_3 , is given by $S(n) = 8n - n^2, n \ge 1$. Calculate the values of u_1, u_2, u_3 and state what type of sequence it is. Obtain a formula for u_n in terms of <i>n</i> , simplifying your answer.								
> 2) Given that $u_k = 11 - 2k$, $(k \ge 1)$, obtain a formula for $S_n = \sum_{k=1}^n u_k$. Find the values of <i>n</i> for which $S_n = 21$.								
≽ 3)	A geometric sei	ries has the first term 2 a	and third term $rac{1}{2}$. Find the value(s) of r ,	the common	ratio, and any associated sum(s) to infinity.			
≻ 4)	The arithmetic	sequence $a_1, a_2, a_3, a_4 \dots$	and the geometric sequence b_1, b_2, b_3	b_3, b_4 bot	h have their fifth term 8 and their			
	eighth term 12	5. Find a_{15} . Calculate $\sum_{n=1}^{15} a_{n}$	b_n , correct to two decimal places.					
≻ 5)	Given that ther	e are two solutions find t	he third term of the geometric sequence	e whose secon	d term is 400 and whose sum to infinity is 2500.			

Topic 6	Applications of Algebra and Calculus Assessment Standard 1.2	Applying algebraic skills to sequences and series	00	<u>••</u>	00
≻ 6)	After an undetected leak at a nuclear power situation, a technician	n was exposed to radiation as follows:			
	On the first day he received a dosage of 450 curie-hours				
	On the second day he received a further dosage of 360 curie-hour	S			
	On the third day he received a further dosage of 288 curie-hours				
	(a) Show that these values could form the first 3 terns of a Geometric sequence and calculate how many curie-hours he was exposed to on the ninth day, assuming the pattern continues in the same way.				
	(b) What was the total radiation received by him by day 15?				
	(c) If the leak had continued undetected in this way, what would	have been the final total long term exposure by the technician			
≻ 7)	(a) The sum of the first 20 terms of an arithmetic series is 350.	(b) $x, x + 6, x + k$ are the first 3 terms of a geometric sequence .			
	The first term is 4.	(i) Write down an expression for the common ratio in two ways.			
	(i) Calculate the common difference between terms.	(ii) Hence express x in terms of k .			
	(ii) When did the sum first exceed 1000?	(iii) For what values of k will the sequence have a sum to infinity?			
		(iv) Express the sum to infinity in terms of x .			
		(v) For what value of x does this sum to infinity equal -24 ?			
≻ 8)	Expand the following as geometric series and state the necessary	condition on for each series to be valid.			
	(a) $\frac{1}{1+x}$ (b) $\frac{1}{4-x}$ (c) $\frac{1}{3+x}$				
≽ 9)	If S_n denotes the sum of the first n terms of the geometric series 1	$1 + \frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3} + \cdots$ where $x > 1$ prove that $\frac{S_{2n}}{S_n} = 1 + \frac{1}{x^n}$.			
> 10)	Find the common ratio of the geometric sequence $sin2\alpha$, $-sin2\alpha$	$2\cos 2\alpha$, $\sin 2\alpha \cos^2 2\alpha$,			
	Prove that for $0 < \alpha < \frac{\pi}{2}$ the series $sin2\alpha - sin2\alpha cos2\alpha + sin2\alpha$	$\alpha \cos^2 2\alpha + \cdots$ has a sum to infinity and that the sum to infinity is $tan\alpha$.			

Topic 6 Applications of Algebra and Calculus Assessment Standard 1.2 Applying algebraic skills to sequences and series	00	<u>••</u>	00
I know that a power series is an expression of the form: $f(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n + \dots$ where $a_0, a_1, a_2 a_3, \dots, a_n, \dots$			
are constants and x is a variable.			
I understand and can use the Maclaurin series : $f(x) = \sum_{r=0}^{\infty} \frac{x^r}{r!} f^{(r)}(0)$ to find a power series for a simple non-standard function.			
I recognise and can determine the Maclaurin series expansions of the functions : e^x , $\sin x$, $\cos x$, $\ln(1 \pm x)$, knowing their range of validity			
$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots \qquad \qquad$			
$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots \qquad \ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots$			
♦ 1) Find the Maclaurin series expansions of the composite functions : (a) $\cos 3x$ (b) e^{x^3} (c) $e^{\sin x}$			
> 2) (a) Obtain the Maclaurin series for $f(x) = \sin^2 x$ up to the term in x^4 .			
(b) Hence write down a series for $\cos^2 x$ up to the term in x^4 .			
▶ 3) Find the Maclaurin expansion of $f(x) = \ln \cos x$, $0 \le x < \frac{\pi}{2}$, as far as the term in x^4 .			
> 4) Write down the Maclaurin expansion of e^x as far as the term in x^4 . Deduce the Maclaurin expansion of e^{x^2} as far as the term in x^4 .			
Hence, or otherwise, find the Maclaurin expansion of e^{x+x^2} as far as the term in x^4 .			
> 5) Find the McLaurin expansion for $\frac{e^{2x}-1}{x}$ up to the term in x^4 .			

Topic 7 Applications of Algebra and Calculus Assessment Standard 1.4Applying algebraic and calculus skills to properties of functions	00	00	$\bigcirc \bigcirc$
I know the meaning of the terms function, domain / range, inverse function, stationary point, point of inflexion and local maxima and minima.			
I know the meaning of the terms global maxima and minima, critical point, continuous, discontinuous and asymptote.			
I can use the first derivative test for locating and identifying stationary points and horizontal points of inflexion.			
I can use the second derivative test for locating and identifying stationary points and non-horizontal points of inflexion.			
I can sketch the graphs of $\sin x$, $\cos x$, $\tan x$, $e^{x} \ln x$ and their inverse functions on a suitable domain.			
I know and can use the relationship between the graph of $y = f(x)$ and $y = kf(x)$, $y = f(x) + k$, $y = f(x+k)$, $y = f(kx)$ where k is a constant.			
I know and can use the relationship between the graph of $y = f(x)$ and $y = f(x) $, $y = f^{-1}(x)$.			
I can determine whether a function is odd or even or neither, and symmetrical and use these properties in graph sketching.			
I can sketch graphs of real rational functions using information, derived from calculus, zeros, asymptotes, critical points and symmetry.			
I know that the maximum and minimum values of a continuous function on a closed interval [a,b] can occur at stationary points, end points or points where f' is not defined.			
♦ 1) Sketch the graph of: (a) $y = \sin x $ $0 \le x \le 2\pi$ (b) $y = 9 - x^2 $ $-6 < x < 6$.			
▶ 2) Determine whether $f(x) = x^2 \cos x$ is odd, even or neither.			
> 3) The function <i>f</i> is defined on the real numbers by $f x = x^7 + \sin x$. Determine whether <i>f</i> is odd, even or neither.			
> 4) The function f is defined by $f x = e^x \sin x$ where $0 \le x \le 2$. Find the coordinates of the stationary points of f and determine their nature			
> 5) A function is defined by $g(x) = \frac{12\sqrt[3]{x}}{4x+1}, x \neq -\frac{1}{4}$.			
(a) Find the coordinates and nature of the stationary points of the curve with equation $y = g(x)$.			
(b) Hence state the coordinates of the stationary point pf the curve with equation $h(x) = \left \frac{12\sqrt[3]{x-1}}{4x-3} - 5 \right $.			

Topic 8	Applications of Algebra and Calculus Assessment Standard 1.3 Applying algebraic skills to summation and mathematical proof	<u>••</u>	<u>••</u>	00
l know	and can use the following sums of series: $\sum_{r=1}^{n} r = \frac{n(n+1)}{2}$, $\sum_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6}$ and $\sum_{r=1}^{n} r^3 = \frac{n^2(n+1)^2}{4}$.			
≻ 1)	Find a formula for each of the following using the sum of series (a) $\sum_{r=1}^{n} (2r^2+3)$ (b) $\sum_{r=1}^{n} (r^2-6r)$ (c) $\sum_{r=1}^{n} (5r^2-2r-2)$ (d) $\sum_{r=1}^{n} (r^3+3r)$			
♦ 2)	Evaluate each of the following using the sum of series: (a) $\sum_{r=1}^{20} (10r-1)$ (b) $\sum_{r=1}^{7} 2r^2$ (c) $\sum_{r=1}^{100} (2k-3)^2$ (d) $\sum_{r=51}^{100} r^2$			
▶ 3)	Express $\frac{2}{r^2+6r+8}$ in partial fractions. Hence evaluate $\sum_{r=1}^{n} \frac{2}{r^2+6r+8}$, expressing your answer as a single fraction.			
♦ 4)	(a) Prove by induction that, for all natural numbers $n \ge 1 \sum_{r=1}^{n} 3(r^2 - r) = (n-1)n(n+1)$. (b) Hence evaluate $\sum_{r=11}^{40} 3(r^2 - r)$.			
♦ 5)	Use Induction to prove that $\sum_{r=1}^{n} r^2 + 2r = \frac{1}{6}n n + 1 2n + 7$ for all positive integers n.			
≻6)	Use Induction to prove that $\sum_{r=1}^{n} 3^r = \frac{3}{2} 3^n - 1$ for all positive integers n.			
≻ 7)	Prove by induction that 2^{3n-1} is divisible by 7 for all integers $n \ge 1$.			
≻ 8)	Prove by induction that $(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$ for all integers $n \ge 1$.			
≻ 9)	If $\mathbf{A} = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix}$, prove by induction that $\mathbf{A}^n = \begin{pmatrix} n+1 & n \\ -n & 1-n \end{pmatrix}$, where <i>n</i> is any positive integer.			

Topic 9	9 Geometry, Proof and Systems of Equations Assessment Standard 1.1(a) Applying algebraic skills to systems of equations	00	0	00
l can u	ise Gaussian elimination to solve a 3 $ imes$ 3 system of linear equations and show that it has either:			
(a) a u	nique solution (b) has no solutions (inconsistency) or (c) has an infinite number of solutions (redundancy).			
l can c	ompare the solutions of related systems of two equations in two unknowns and recognise ill-conditioning.			
♦ 1)	Use Gaussian elimination to solve the system of equations: $x+2y+z=-3$ (a) $2x+y+z=4$ (b) $3x-y-z=-11$ (c) $x-y+z=-9$ $x+2y-2z=9$ $x+2y+z=-3$ $2x+5y+3z=-1$ $x-z=2$ $x-y+z=-9$ $x+2y-2z=9$			
~	x + y + z = 2			
► 2)	(a) Apply the method of Gaussian elimination to $x + 2y + 3z = 1$ and show that there is an infinite number of solutions. 3x + 4y + 5z = 5			
	(b) If a solution has $z = \lambda$, show that $y = -1 - 2\lambda$ and $x = 3 + \lambda$.			
▶ 3)	For what values of a and b will the system of equations $x+2y+z=60$ 2x+3y+z=85 3x+y+pz=105 (a) be inconsistent and have no solutions (b) be redundant and have infinitely many solutions?			
≻ 4)	A car manufacturer is planning future production patterns. Based on estimates of time, cost and labour, he obtains a set of three equations for the numbers, x , y and z of three new types of car. x+2y+z=60 These equations are $2x+3y+z=85$ where the integer λ is a parameter such that $0 < \lambda < 10$. $3x+y+(\lambda+2)z=105$,			
	 (a) Use Gaussian elimination to find an expression for z in terms of X. (b) Given that z must be a positive integer, what are the possible values for z? (c) Find the corresponding values of x and y for each value of z. 			
≻ 5)	Determine if these systems of equations are ill conditioned. (a) $7x + 5y = 19$ 4x + 3y = 11 and (b) $7x + 5y = 24x - 3y = 13$.			

Topic 9 Geometry, Proof and Systems of Equations Assessment Standard 1.	1(b) Applying algebraic skills to matrices	••• (•••
I know the meaning of the terms matrix, element, row, column, order, identit	ty matrix, inverse, determinant, singular, non-singular and transpose.		
I can perform matrix addition, subtraction, multiplication by a scalar and mul	tiplication.		
I know that: $A+B=B+A$ $AB \neq BA$ in general (AB)	$A(B+C) = A(BC) \qquad A(B+C) = AB + AC$		
I know and can apply properties of the transpose matrix: (A')	A' = A $(A + B)' = A' + B'$ $(AB)' = B'A'$		
I know and can apply properties of the identity and inverse matrix: AA^{-}	$A^{-1} = A^{-1}A = I$ $(AB)^{-1} = B^{-1}A^{-1}$		
I can calculate the determinant of 2×2 and 3×3 matrices. I can determine w	hether a matrix is singular .		
I know and can apply det (AB) = det A det B.			
I know and can find the inverse of a non-singular 2 × 2 matrix, $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$	using $A^{-1} = \frac{1}{ A } \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.		
I can find the inverse, where it exists, of a 3 × 3 matrix using elementary row operations or the adjoint method.			
I can find the solution to a system of equations $AX = B$ where A is a 3 x 3 matrix and where the solution is unique.			
I know and can use the following 2 × 2 matrices to carry out single geometric transformations in the plane.			
Reflection in the x-axis $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	Reflection in the line $y = x$ $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$		
Reflection in the y-axis $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ F	Reflection in the line $y = -x$ $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$		
Rotation of θ radians in a positive $(\cos \theta - \sin \theta)$ direction about the origin $\sin \theta - \cos \theta$	A dilatation about O, where $\begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}$		
I can identify and use the correct 2×2 transformation matrices, in the correct	t order, to carry out composite geometric transformations in the plane.		
♦ 1) Given the matrices $A = \begin{pmatrix} 4 & 8 \\ -2 & 6 \end{pmatrix}$, $B = \begin{pmatrix} -5 & 1 \\ 0 & 7 \end{pmatrix}$, $C = \begin{pmatrix} 3 & 0 \\ 10 & -4 \end{pmatrix}$	and $D = \begin{pmatrix} m & -3 & -8 \\ 0 & -2 & -1 \\ 1 & -1 & 4 \end{pmatrix}$		
Find (a) $3A - 2B + C$ (b) CB (c) A^{-1} (d) D	Determine the value(s) of m for which D is singular .		

Topic 9	Geometry, Proof and Systems of Equations Assessment Standard 1.1(b) Applying algebraic skills to matrices	00	<u>••</u>	
≥ 2)	Calculate the inverse of the matrix $\begin{pmatrix} 2 & x \\ -1 & 3 \end{pmatrix}$. For what value of x is this matrix singular ?			
≥ 3)	Let A be the matrix $\begin{pmatrix} 3 & -2 \\ 5 & 9 \end{pmatrix}$. Show that $A^2 - 12A = nI$ where n is an integer and I is the 2×2 identity matrix.			
≻ 4)	The matrix A is such that $A^2 = 4A - 3I$ where I is the corresponding identity matrix. Find integers p and q such that $A^4 = pA + qI$.			
≻ 5)	(a) Given that $X = \begin{pmatrix} 2 & a \\ -1 & -1 \end{pmatrix}$ where <i>a</i> is a constant and $a \neq 2$, find X^{-1} in terms of <i>a</i> .			
	(b) Given that $X + X^{-1} = I$, where I is the 2×2 the identity matrix, find the value of a .			
≻ 6)	Matrices A and B are defined by $A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 1 & 2 \end{pmatrix}$ and $B = \begin{pmatrix} x+2 & x-2 & x+3 \\ -4 & 4 & 2 \\ 2 & -2 & 3 \end{pmatrix}$.			
	(a) Find the product AB. (b) Obtain the determinants of A and of AB. Hence, or otherwise obtain an expression for det B.			
≥ 7)	$A = \begin{pmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{pmatrix}$ (a) Find A^{-1} the inverse of A . (b) X and B are two 2×2 matrices such that $AX = B$. Prove that $X = AB$			
> 8)	A matrix is defined as $A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & -1 \\ -4 & 1 & 1 \end{pmatrix}$. Show that matrix A has an inverse, A^{-1} , and find the inverse matrix.			
≻ 9)	Write down the 2×2 matrix A representing a rotation of $\frac{\pi}{3}$ radians about the origin in an anticlockwise direction and the 2×2 matrix			
	B representing a reflection in the y-axis. Hence, show that the image of the point (x, y) under the transformation A followed by the			
	transformation B is $\left(-\frac{x-py}{2}, \frac{px+y}{2}\right)$, stating the value of <i>p</i> .			

Topic 10a Geometry, Proof and Systems of Equations Assessment Standard 1.4Applying algebraic skills to number theory)	00	0	
I can use Euclid's algorithm to find the greatest common divisor of two positive integers.				
♦ 1) Use the Euclidean algorithm to obtain the greatest common divisor of 1139 and 629.				
I can express the greatest common divisor of the two positive integers as a linear combination of the two. > 2) Use the Euclidean Algorithm to find integers x and y such that: (a) $210x + 156y = 6$ (b) $458x + 308y = 7$ (c) $3289x + 2415y = 23$				
I can use the division algorithm to write integers in terms of bases other than 10.				
> 3) Use the division algorithm to express: (a) 468_{10} in base 7 (b) 999_{10} in base 6 (c) 1964_{10} in base 16				

Topic 10b Geometry, Proof and Systems of Equations Assessment Standard 1.5 Applying algebraic and geometric skills to methods of	proof 🧿	00	00
I understand and make use of the notations \Rightarrow , \Leftarrow and \Leftrightarrow , know the corresponding terminology implies, implied by, equivalence.			
I know the terms natural number, prime number, rational number, irrational number.			
I know the terms if and only if, converse, negation and contrapositive.			
I can use direct proof. I can use indirect proof by providing a counter-example , using proof by contradiction or by using proof by contrapositive .			
♦ 1) Find a counterexample to disprove the conjecture that $x^2 - x > 0$ for all real values of x .			
 Consider the statements A and B: A For any integer k, if 7k + 1 is even, then k is odd B There is no largest even integer. (a) Prove statement A by considering its contrapositive. (b) Prove statement B by contradiction. 			
♦ 3) Prove that the product of an odd and even integer is even.			
\blacklozenge 4) Prove by contradiction that if x is an irrational number, then $x - 7$ is irrational.			
♦ 5) Prove by contrapositive that if $x^2 - 6x + 5$ then x is odd.			
 Given that p n = n² + n consider the statements: A p n is always even. B p n is always a multiple of 3. For each statement, prove it is true, or otherwise, disprove it. 			
\blacklozenge 7) Use the method of proof by contradiction to show that \overline{x} is an irrational number.			

Topic 11 (Geometry, Proof and Systems of Equations Assessment Standard 1.2	Applying algebraic and geometri	c skills to vectors	00	00	00
I know the	e meaning of the term: Unit vector, Direction ratios, Direction cosines, Vector product,	, Scalar triple product.				
l can eval	uate the vector product $\underline{a} \times \underline{b}$ using $\underline{a} \times \underline{b} = \begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \underline{i} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} - \underline{j} \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} + \underline{k} \begin{vmatrix} a_1 \\ b_1 \end{vmatrix}$	$\begin{vmatrix} a_2 \\ b_2 \end{vmatrix}$ and I know that $(\underline{a} \times \underline{b}) = -(\underline{b})$	<u>2</u> × <u>a</u>).			
I know that the magnitude of the vector product $ \underline{a} \times \underline{b} = \underline{a} \underline{b} \sin \theta$ which is the area of a parallelogram with sides \underline{a} , \underline{b} and included angle θ .						
♦ 1) G	iven $\underline{u} = 5\underline{i} + \underline{j}$, $\underline{v} = 4\underline{i} - 2\underline{j} - 3\underline{k}$ and $\underline{w} = -2\underline{i} + 3\underline{j} + \underline{k}$ calculate : (a) $\underline{u} \times \underline{v}$	(b) $\underline{u} \times \underline{w}$ (c) <u>w</u> × <u>v</u>			
≻2) G	iven $\underline{u} = 5\underline{i} + \underline{j}$, $\underline{v} = 4\underline{i} - 2\underline{j} - 3\underline{k}$ and $\underline{w} = -2\underline{i} + 3\underline{j} + \underline{k}$ calculate : (a) $\underline{u} \cdot (\underline{v} \times \underline{w})$	(b) \underline{w} . ($\underline{v} \times \underline{u}$)				
≻ 3) TI	hree vectors OA, OB and OC are given by $\underline{u}, \underline{v}$ and \underline{w} where $\underline{u} = \underline{i} + 5\underline{j} + \underline{k}$, $\underline{v} = 2\underline{i} + 2\underline{i}$	$3\underline{k}$ and $\underline{w} = -\underline{i} + 5\underline{j} - 2\underline{k}$.				
Ca	alculate \underline{u} . ($\underline{v} \times \underline{w}$). Interpret your result geometrically.					
I can find	the equation of a line in parametric, symmetric or vector form.					
I can find the angle between two lines in three dimensions.						
I can determine whether or not two lines intersect and, where possible, find the point of intersection.						
♦4) F	ind, in vector, parametric and symmetric form an equation for the line which passes th	hrough the points (3, −2, 4) and (2,	5, –2).			
≻5) F	Find the acute angle between the lines $\underline{r} = \begin{pmatrix} 7\\1\\5 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\3 \end{pmatrix}$ and $\underline{r} = \begin{pmatrix} -2\\6\\-3 \end{pmatrix} + \lambda \begin{pmatrix} 2\\-5\\3 \end{pmatrix}$.					
≻6) Le	et L_1 and L_2 be the lines $L_1: x = 8 - 2t, y = -4 + 2t, z = 3 + t$ and $L_2: \frac{x}{-2} = \frac{y+2}{-1} = \frac{z-9}{2}$					
(;	a) Show that L_1 and L_2 intersect and find their point of intersection. (b) Verify that the second se	he acute angle between them is co	$s^{-1}\left(\frac{4}{9}\right).$			

Topic 1	1 Geometry, Proof and Systems of Equations Assessment Standard 1.2 Applying algebraic and geometric skills to vectors	00	<u>••</u>	00
l can fi	nd the equation of a plane in vector form, parametric form or Cartesian form.			
l can fi	nd the point of intersection of a plane with a line which is not parallel to the plane.			
I can d	etermine the intersection of 2 or 3 planes.			
I can fi	nd the angles between a line and a plane or between 2 planes.			
♦ 7)	Find, in Cartesian form, the equation of the plane which has normal vector $\begin{pmatrix} 4 \\ -2 \\ 3 \end{pmatrix}$ and passes through the point (4, -7, 2).			
≻ 8)	Find an equation of the plane π which contains the points A (1, 1, 0), B(3, 1, -1) and C(2,0,-3).			
≻ 9)	Find the point of intersection of the line $\frac{x-3}{4} = \frac{y-2}{-1} = \frac{z+1}{2}$ and the plane with equation $2x + y - z = 4$.			
> 10)	Find an equation for the line of intersection of the plane with equation $2x + y + 4z = 6$ and the plane with normal vector $i + j - 2k$			
	through the point (1,1,1).			
> 11)	Find the angle between the line $x = 12t + 1$, $y = 3t - 4$, $z = -t + 5$ and the plane $2x - 3y + 4z = 3$.			
≻ 12)	Find the angle between the line $\frac{x-3}{2} = \frac{4-y}{5} = \frac{2z+3}{2}$ and the plane $x+2y-3z=2$.			
> 13)	Find the angle between the two planes with equations $2x - y + z = 5$ and $x + y - z = 1$, respectively.			
≻ 14)	(a) Find the equation of the plane containing the points A(2, 0, 1), B(3, 1, 0) and C(0, 1, 1). (b) Find the angle between this plane and the plane with equation $2x + y + z = 1$.			
	(c) Find the point of intersection of the plane containing A, B, and C and the line with equation $\frac{x-1}{2} = \frac{y+4}{2} = \frac{z-1}{1} = t$.			

Topic 12 Methods in Algebra and Calculus Assessment Standard 1.4 Applying calculus skills to solving first order differential equations	00	00	00
I can solve first order differential equations of the form $\frac{dy}{dx} = g(x)h(y)$ or $\frac{dy}{dx} = \frac{g(x)}{h(y)}$ by separating the variables.			
I can find general and particular solutions given suitable information.			
♦ 1) Solve $\frac{dy}{dx} = y(x-1)$ ♦ 2) Solve $\frac{dy}{dx} = 2x(1+y^2)$ ♦ 3) Solve $\frac{dy}{dx} = 4xe^{-y}$			
> 4) For a differential equation $\frac{dx}{dt} = (3-x)(1+x)$, when $x = 0, t = 0$, show that $\frac{1+x}{3-x} = Ae^{kt}$, stating the values of A and k.			
Hence express the solution explicitly in the form $x = f(t)$.			
> 5) Solve $\frac{1}{x} \frac{dy}{dx} = y \sin x$ given that when $x = \frac{\pi}{2}$, $y = 1$.			
> 6) Solve the differential equation $\frac{dy}{dx} = \frac{\sqrt{x}}{e^{3y}}$, given $y = 0$ when $x = 1$ expressing y explicitly in terms of x.			
> 7) Solve the differential equation giving y in terms of $x : \cos y \frac{dy}{dx} = x^2 \csc^2 y$, given that when $x = \frac{1}{2}$, $y = \frac{\pi}{2}$.			
i can solve first order linear differential equations given or rearranged in the form $\frac{dy}{dx} + p(x)y = f(x)$ using the integrating factor method .			
I can find general and particular solutions given suitable information.			
♦ 8) Solve $\frac{dy}{dx} + \frac{3y}{x} = \frac{e^x}{x^3}$ 9) Solve $\frac{dy}{dx} + y \cot x = \cos x$ 10) Solve $x^2 \frac{dy}{dx} + 3xy = \sin x$			
> 11) Solve $x \frac{dy}{dx} - y = x^2$ given that $y = 3$ when $x = 1$.			
> 12) Solve $\frac{dy}{dx} = y \tan x - \sec x$ given that when $x = 0$, $y = 1$.			

Topic 12 Methods in Algebra and Calculus Assessment Standard 1.4 Applying calculus skills to solving second order differential equations			0
I know the meaning of the terms homogeneous, non-homogeneous, auxiliary equation, complementary function and particular integral.			
I can find the general solution of a second order homogeneous ordinary differential equation $a \frac{d^2 y}{dx^2} + b \frac{dy}{dx} + cy = 0$ with constant coefficients			
where the roots of the auxiliary equation are (a) real and distinct (b) real and equal (c) are complex conjugates.			
♦ 1) Solve the equations: (a) $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 6y = 0$ (b) $\frac{d^2y}{dx^2} + 12\frac{dy}{dx} + 9y = 0$ (c) $\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 13y = 0$.			
I can solve initial value problems for second order homogeneous ordinary differential equation with constant coefficients.			
> 2) Solve $\frac{d^2y}{dx^2} + 12\frac{dy}{dx} + 36y = 0$ with $y = 0$ and $\frac{dy}{dx} = 1$ when $x = 1$.			
> 3) Solve $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 13y = 0$ with $y = -1$ and $\frac{dy}{dx} = 2$ when $x = 0$.			
I can solve second order non-homogeneous ordinary differential equation with constant coefficients $a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = f(x)$ using the auxiliary			
▶ 4) Obtain the general solution of the differential equation $\frac{d^2y}{dx^2} - 7\frac{dy}{dx} + 10y = 23\sin x + 11\cos x$.			
> 5) (a) Find the general solution to the following differential equation: $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} - 5y = 1 - x^2$.			
(b) Hence find the particular solution for which $y = 0$ and $\frac{dy}{dx} = -18$ when $x = 0$.			
▶ 6) Solve the second order differential equation $3\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = x^2$, given that when $x = 0$, $y = 2$ and $\frac{dy}{dx} = 3$.			
> 7) Solve the second order differential equation $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 3e^{2x}$, given that when $x = 0$, $y = -1$ and $\frac{dy}{dx} = -1$.			